
Proceedings of the 2001 IEEE
Workshop on Information Assurance and Security

T1B3 1100 United States Military Academy, West Point, NY, 5–6 June 2001

SITAR: A Scalable Intrusion-Tolerant Architecture for Distributed Services

Feiyi Wang, Fengmin Gong, Chandramouli Sargor,

Katerina Goseva-Popstojanova, Kishor Trivedi, Frank Jou

Abstract—This paper presents a intrusion tolerant archi-
tecture for distributed services, especially COTS servers. It
is motivated by two observations: First, no security precau-
tions can guarantee that a system will not be penetrated;
Second, mission critical applications need to provide mini-
mal level of services even under active attacks or partially
compromised. The emphasis of proposed architecture is on
the continuity of operation. In this context, effects are more
important than causes because a system will have to deal
with and survive an adverse effect long before a determi-
nation is made as to whether the cause was an malicious
attack, or a accidental failure. We utilize the techniques of
both redundancy and diversity as our building blocks. Five
critical components are defined in this proposed architec-
ture: (1) Proxy Servers enforce the service policy specified
by current intrusion tolerant strategy and policies determine
which COTS servers the request should be “forwarded” to
and how the final result be presented. (2) Acceptance Moni-
tors apply validity checks to the response, optionally forward
them to Ballot monitors along with indication of checking re-
sults. Acceptance monitors also detect signs of compromise
on the COTS servers and generate intrusion triggers. (3)
Ballot Monitors serve as “representatives” for the respective
COTS servers to solve conflicts, and decide a final response
through either a majority voting or Byzantine agreement
process. The actual process taken will depend on the current
level of detected security threat. (4) Adaptive Reconfigu-
ration module receives intrusion trigger information from
other modules (including Acceptance Monitors), evaluates
threats, the tolerance objectives, cost/performance impact,
and generate new configurations for the system. (5) Audit
Control verifies the audit records and identifies abnormal
behaviors in components by conducting periodic diagnosis
tests.

Keywords— Intrusion tolerance, intrusion detection and
response, distributed system security, adaptive reconfigu-
ration, voting

Feiyi Wang and Frank Jou are with Advanced Network Re-
search Group, MCNC, Research Triangle Park, NC. Email:
{fwang2,jou}@mcnc.org
Fengmin Gong is with Intrusion Detection Technology Division of

IntruVert Network Inc. Email: fengmin@intruvert.com
Chandramouli Sargor is with CoSine Communications, Inc., Red-

wood City, CA. Email: Chandramouli.Sargor@cosine.com
Katerina Goseva-Popstojanova is a research associate in Duke Uni-

versity, Durham, NC. Email: katerina@ee.duke.edu
Kishor Trivedi is a professor in Duke University, Duhram, NC.

Email: kst@ee.duke.edu
This work is sponsored by the U.S. Department of Defense Ad-

vanced Research Projects Agency (DARPA) under contract N66001-
00-C-8057

I. Introduction

In the past, network security research has in general em-
phasized on making information systems secure by keep-
ing intruders out. Confidentiality and integrity have been
achieved by encrypting critical information and limiting ac-
cess to it only to authenticated users. However, since no
security precautions can guarantee a system not be pene-
trated, once system was compromised or even just under at-
tack, it will be left in a vulnerable and unpredictable state,
which is not acceptable for mission critical applications or
services. As a second line of defense, Intrusion detection
and response research has mostly concentrated on known
and well-defined attacks. This narrow focus of attacks has
accounted for both the success and the limitation of many
commercial intrusion detection systems (IDS). A number of
well respected research and commercial IDS have been eval-
uated at MIT Lincoln Labs in the past two years. The re-
sults showed that new and novel attacks present formidable
challenges to these systems.

As soon as we focus our attention on the attacks them-
selves, we cannot expect to develop a general protection
mechanism because all attacks are not well defined and
there are always unknown attacks. Although intrusion tol-
erance must also deal with intrusions, it is inherently tied
to the functions and services that require protection (i.e.
to be made intrusion tolerant). It is this focus that makes
intrusion tolerance the most promising approach to build
our defense from. As a first advantage, we can now de-
velop intrusion triggers by focusing on only those events
that pose a threat to the services under consideration in-
stead of on arbitrary events. Second, we can leverage many
well developed techniques from the fault tolerant and de-
pendable computing research. As a third advantage, newly
developed intrusion tolerance techniques can eventually be
used to build new information systems that will be invul-
nerable to intrusions (to the degree that desirable levels
of services can be maintained regardless of intrusions). To
overcome the inability of coping with unknown attacks, we
need to shift attention from attacks or attacker themselves
to the target of protection, which is inherently tied to the
functions and services being provided. This implies that
the effect of attack is more important than the cause of the

attack because a system will have to deal with and survive

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 38

an adverse effect long before a determination is made as to
whether the cause was a malicious attack, a natural failure,
or human accident. The emphasis here is on the continuity
of operation or provision of minimal level of services despite
active attacks.

SITAR (Salable Intrusion-tolerant Architecture for Dis-
tributed Services) is our proposed architecture which aim
to overcome above problems and provide a framework to
build intrusion tolerant system for distributed services. It
has the following novel aspects: (1) We focus on one generic
class of services (network-distributed services built from
COTS components) as target of protection. Specially, we
discuss the framework under web service context to make
our presentation tangible. (2) Two specific challenges are
addressed in this architecture. The first one is how some
of the very basic techniques of fault tolerance (e.g., redun-
dancy and diversity) apply to our target. The second is how
we deal with the external attacks and compromised compo-
nents, which exhibit very unpredictable behavior compared
to accidental or planted faults. (3) Our dynamic reconfigu-
ration strategies will be based on intrusion tolerant model
built within the architecture.

The rest of the paper are organized as follows. Section II
describes the overall architecture design, core components
and information flow. Section III, IV, V, VI, VII present
design details on Proxy Server, Acceptance Monitor, Bal-
lot Monitor, Audit Control and Adaptive Reconfiguration
respectively. Section VIII discusses our experimental setup
and preliminary testing results. Section IX makes the con-
clusion remarks.

II. SITAR Architecture

Figure 1 presents a logical view of the proposed service
architecture. Everything within the dotted box is part of
the newly proposed intrusion tolerant architecture. The
block on the right consists of COTS servers. The basic
assumption is that COTS systems are vulnerable to intru-
sions. The proposed architecture will enable us to build
intrusion tolerant services out of the existing intrusion vul-
nerable servers. However, the architecture will not exclude
intrusion tolerant servers from being integrated. In fact, if
new servers are built as part of an intrusion tolerant service
infrastructure, new server access protocols can be defined
to explicitly support correlation of individual request and
response. With such a protocol, Proxy Servers and Ballot
Monitors can easily correlate concurrent service requests.

The general information flow for the architecture is as
follows. Proxy Servers represent public access points for
the intrusion tolerant services being provided (e.g. a deci-
sion support system for military command and control, or
a transaction processing system for an E-commerce site).
All requests come in to one of the Proxy Servers depend-
ing on the service needs. The Proxy Server enforces the
service policy specified by the current intrusion tolerant

strategy. The policy determines which COTS servers the
request should be “forwarded” to, and how the results from
these servers should be adjudicated to arrive at the final
response. A new request by the Proxy Server to the appro-
priate COTS servers is made on behalf of the original client,
as depicted by the thin lines from the Proxy Servers to the
COTS servers. Relevant Ballot Monitors and Acceptance
Monitors are also informed of this decision.

When the responses (signified by the thick lines from
right to left) are generated by the COTS servers, they
are first processed by the Acceptance Monitors. The Ac-
ceptance Monitors apply certain validity check to the re-
sponses, forwarding them to the Ballot Monitors along with
an indication of the check result. The Acceptance Moni-
tors also detect signs of compromise on the COTS servers
and produce intrusion triggers for the Adaptive Reconfig-
uration module.

The Ballot Monitors serve as “representatives” for the
respective COTS servers and decide on a final response
through either a simple majority voting or Byzantine agree-
ment process. The actual process taken will depend on the
current level of detected security threat. The final response
is forwarded to the Proxy Servers to be delivered to the re-
mote client.

The Adaptive Reconfiguration Module (ARM) receives
intrusion trigger information from all other modules, eval-
uates intrusion threats, the tolerance objectives, and the
cost/performance impact, and generates new configura-
tions for the system. Since it is assumed that any indi-
vidual component can be compromised, the backup ARM
is provided to guard against ARM becoming a single point
of failure.

The Audit Control module provides means for audit-
ing the behavior of all the other components in the intru-
sion tolerant system. All system modules maintain audit
logs with signature protection. These logs can be verified
through the Audit Control module. Additional diagnostic
tests can be conducted through the Audit Control module.

Intrusion triggers are distributed among three sets of
modules. The triggers in the Acceptance Monitors are re-
sponsible for detecting compromised COTS servers. The
triggers in the Proxy Servers are for detecting external at-
tacks, and the triggers in the Audit Control will help the
security administrator to monitor the secure operation of
all the new functional blocks in our architecture through
active auditing.

It should be noted that each of the functional blocks, Pi,
Bi, and Ai, only represents the logical function to be exe-
cuted to satisfy a given service request. Multiple processes
may run on a single physical processor, or each process
may run on a dedicated processor. The decision will be
made dynamically based on the request type, the current
threat level, and the system load. Regardless of the pro-
cess allocation, all these logical blocks, including the Audit

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 39

S2

S1

A2

A1

request

B2

B1

Adaptive
Reconfiguration

Proxy Server
Monitor
Acceptance Ballot Monitor COTS Servers

P2

P1

request

response

control
Audit Control

AiBiPi Si
response

Fig. 1. A generic intrusion-tolerant service architecture

Control module and the Adaptive Reconfiguration mod-
ule, will maintain full reachability among themselves. This
reachability is critical for coordination among them and for
implementing fully dynamic reconfigurations.
Our proposed intrusion tolerant system architecture does

not require any change to the COTS client or the COTS
server applications. In fact, it is completely transparent to
both end users and server applications. In the following
sections, we discuss each of the key architecture compo-
nents in further detail.

III. Proxy Servers

In the intrusion tolerant architecture proposed above,
the Proxy Servers constitute the set of machines that are
visible to the end user and that provide the services in an
intrusion tolerant manner. Typically, an end user will not
contact a COTS server directly, in fact, the identities (IP
addresses) of the COTS servers may not even be publicly
known. As far as the end user is concerned, it is the Proxy
Server that is providing the service. Many high availability
project such as Piranha [1] is designed for Primary/Backup
classical scenarios, as illustrated in Figure 2. SITAR Proxy
Server aims to provide higher degree of tolerance through
shared control on dynamic resource pool, as illustrated in
Figure 3. We elaborate this design idea as follows.
As shown in Figure 1, a cluster of Proxy Servers will

be utilized in our architecture. While each server will have
distinct physical IP addresses that are tied to distinct phys-
ical network interfaces, they will also share a pool of virtual
IP addresses amongst themselves. Only the virtual IP ad-
dresses are made known to the clients. There may be a
single pool of virtual IP addresses or there could be one
pool per intrusion tolerant service that is being provided.
The main advantage in using virtual IP addresses is that
it allows easy migration of addresses from one machine to
another in case of a fault or intrusion. We will design tech-
niques to share these virtual IP addresses among the active
machines in the proxy cluster in such a fashion that as long
as even one of the machines in the cluster is active, all of the
virtual IP addresses advertised to the clients will be avail-
able. This is achieved by migrating virtual IP addresses
from a faulty Proxy Server to the Proxy Servers that are

functioning correctly. Migrating addresses directly makes
it possible to do load balancing by moving virtual IP ad-
dresses from a heavily loaded machine to a lightly loaded
one. Also, since clients access services using virtual IP ad-
dresses, migration also enables dynamic reconfiguration of
proxies. For instance, under normal circumstances a spe-
cific service may be provided only on one Proxy Server.
When under attack, the service could be migrated to all
the proxies to improve survivability. It must be empha-
sized that all such migrations/reconfigurations are com-
pletely transparent to the end user.

R

Floating IP address

primary server backup server

R

R can be a generic resource object

R:

Fig. 2. Primary/backup operation mode

While migrating virtual IP addresses from one Proxy
Server to another is in itself fairly simple, the main issue
associated with migration is to ensure that the “state” as-
sociated with services being proxied is correctly migrated
as well. For instance, a Proxy Server will need to main-
tain state to keep track of requests issued by clients, the
particular set of servers, Ballot and Acceptance monitors
used to fulfill specific requests, the virtual IP address used
by the client to make the request and other such parame-
ters. Clearly, one cannot expect a compromised or faulty
Proxy Server to migrate this state upon detection of a fault
or intrusion. The state information would therefore need
to be shared in such a way that all of the Proxy Servers
have a consistent view of the global shared state. There
are many possible approaches to sharing such state infor-
mation. For example, reliable multicast or shared memory
techniques could be used to exchange such information.
However, there are problems with both approaches. With
reliable multicast, there can be a significant impact on net-
work performance especially if the state does not need to
be updated frequently. Shared memory implementations

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 40

tend to be platform dependent and stand in the way of
design diversity. Our preliminary analysis indicates that
Javaspaces [2] may be an appropriate mechanism for shar-
ing global state and other control information.

R
R

R

primary server 1

primary server 2

lease

lease expire/fail

Resource Pool

backup server

take over

Fig. 3. Shared resource pool operation mode

Javaspaces is a space based distributed computing
paradigm that provides a platform independent framework
for implementing such coordination mechanisms. Unlike
reliable multicast, a state object need not be multicast to
all the Proxy Servers. Rather, it is simply written into
the space and can be retrieved by any other server that is
waiting for updated information. Since it is implemented
in Java, it is naturally platform independent and supports
design diversity. Moreover, many of the features devel-
oped for distributed computing can be utilized for provid-
ing higher degree of fault tolerance as well. For instance,
Javaspaces defines a transaction operation. A transaction
is a collection of operations that are performed atomically.
Either all of the operations succeed, or none of them does.
If all operations occur successfully, the transaction is said
to be committed. If it is not committed, then the transac-
tion is aborted. This is extremely useful for sharing state
information. A Proxy Server may take the state object out
of the space and after updating it to reflect new connection
requests etc, will write it back into the space. However, if
the Proxy Server crashes while it is updating the state ob-
ject, the information is lost from the space. A transaction
operation automatically ensures that this will not happen.
The take operation from the space will only be committed
if the subsequent write operation into the space is com-
pleted as well. Using Javaspaces for coordination will also
make it possible to leverage research results from a recently
funded DARPA project Yalta [3] at MCNC that is aimed
at building a Javaspace based secure collaboration infras-
tructure in support of Dynamic Coalitions.
The Proxy Servers receive client requests and forward it

to the actual COTS servers that will fulfill the request. De-
pending on the security posture of the overall system, this
request might be forwarded to more than one server. De-
cisions on which servers to forward the requests to may be
made on a per request basis (under high threat conditions)
or on a session basis (under low threat conditions). The
Proxy Server is responsible for coordinating the forwarding
of client requests to COTS servers, correlating them with
the responses from the Ballot Monitors and forwarding the

final result back to the client. We will explore Javaspaces
based mechanisms as one possible means of achieving the
coordination between the Proxy Servers and other compo-
nents in our architecture.

The Proxy Servers form the front line of our intrusion
tolerant architecture and are most likely to be the tar-
gets of external attacks. These attacks can range from
simple denial of service attacks to attacks that may com-
promise one or more of the Proxy Servers. Detection of
attacks and possibly compromised Proxy Servers therefore
requires for timely action to be taken to reconfigure the
system and provide non-interrupted service to the clients.
This is accomplished by deploying an IDS on each of the
Proxy Servers. The IDS software on each proxy will contin-
ually monitor the network traffic for external attacks and
will also monitor all other proxies to determine if they are
behaving correctly. We intend to utilize and extend exist-
ing research results from our earlier projects in building
the IDS system. Specifically, the recently completed Ji-
Nao [4] project at MCNC has lead to the development of a
highly extensible intrusion detection system that uses rule
based, protocol based and statistical based approaches to
detect intrusions. The JiNao IDS can be tailored to our
specific environment and deployed on each of the Proxy
Servers. Procedures for exclusion/inclusion of physical ma-
chines from/into the proxy cluster will also be developed.

When the IDS on a Proxy Server detects an attack or
compromised peer, the ARM will be notified. The ARM
will evaluate this along with all security relevant informa-
tion from other modules and decide on whether a reconfig-
uration is necessary. Reconfiguration for the Proxy Servers
includes changing the level of access control imposed on
clients, degrees of redundancy used to fulfill a client re-
quest and increased auditing.

IV. Acceptance Monitors

Acceptance Monitors process the responses from the
COTS servers and apply acceptance tests on them. The
responses, along with the results of the acceptance tests,
are then forwarded to the Ballot Monitors. Another func-
tion of the Acceptance Monitors is to detect intrusions in
the COTS servers and alert the Adaptive Reconfiguration
module.

An acceptance test is a programmer or developer pro-
vided error detection measure in a software module, in the
form of a check on the reasonableness of the results cal-
culated, which follows the execution of the module [5]. It
usually consists of a sequence of statements which will raise
an exception if the state of the system is not acceptable. If
any exception is raised by the acceptance test, the module
concerned is said to have failed or been compromised. In
our case, the module may correspond to the application
on the COTS server or the server itself. The acceptance
test forms the basis for the recovery block scheme for fault

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 41

Acceptance
testing engine

Probing
engine

Self−testing
module

Adaptive
Reconfiguration

Audit
control

S1

S2

responses of
probing requests

Sn

security
policy
database

Validation
checker

proxy cluster

intrusion trigger

accept

requests

Acceptance Monitor COTS Servers

requests

probing requests

responses

shared space

Fig. 4. Architecture of Acceptance Monitor

tolerance in software.

Acceptance tests may be devised such that they test for
what a module should do or should not do. One may be
simpler or provide a higher degree of independence com-
pared to the other. Currently, no methodology exists for
deciding on the most appropriate type of test for a given
situation.

Acceptance tests are highly application dependent. The
application has to be understood thoroughly in order to
devise meaningful tests. The choice for the type of test is
also often dictated by runtime, storage, and error detec-
tion requirements. Most acceptance tests may be classified
into the four categories described below. However, some
of these may not be directly applicable for certain services
unless suitable changes can be made to the COTS servers.

A. Satisfaction of requirements

In many cases, conditions that must be met at the com-
pletion of a module execution, are imposed by the problem
statement or the specifications for that module. These con-
ditions can be used to construct the acceptance tests. Inde-
pendence is a very important consideration in the design of
acceptance tests. It may be a difficult and subtle problem
to devise an independent satisfaction of requirements.

B. Accounting tests

The kind of applications accounting checks are suitable
for, are transaction based applications which involve sim-
ple mathematical operations. Examples are airline reserva-
tion systems, library records, inventory control and control
of hazardous materials. A tally for both the total num-
ber of records and the sum over all records of a particular
data field can be compared between source and destina-
tion, whenever a large number of records are transmitted
or reordered. Practices like double entry bookkeeping have
been instituted in financial computing and are also appli-
cable in other high volume transaction applications.

C. Reasonableness test

Reasonableness tests detect software/system failures by
using precomputed ranges, expected sequences of program
states, or other relationships that are expected to be sat-
isfied. Reasonableness tests are based on physical con-
straints, while satisfaction of requirements tests are based
on logical or mathematical relationships. Reasonableness
tests are adapted for control or switching systems where
physical constraints can determine the range of possible
outcomes. Another type of reasonableness test is based on
progression between subsequent states. Tests for reason-
ableness of numerical or state variables are quite flexible
and effective for constructing fault tolerant process control
software. They permit acceptance criteria to be modified
as a program matures.

D. Computer runtime checks

Runtime checks comprise those provided by most current
computers as continuous execution sequences which are of-
ten hardware implemented. They detect anomalous states
such as divide by zero, overflow, underflow, undefined oper-
ation code, end of file, or write protection violations. These
runtime tests can also serve as additional acceptance tests
that cover much wider area and detect more subtle dis-
crepancies. When a runtime error is detected, a bit in a
status register is set and control is transferred to an alter-
nate routine. Data structure and procedure oriented tests
which are embedded in special software or in the operating
system can also be incorporated by runtime checks. State
chart based design can perhaps be exploited for state based
runtime checks.
In the case of our architecture, we need to determine the

acceptance tests based on the proposed applications. A
particular category of acceptance tests might be the best
suited for a given application while devising certain cate-
gories of tests may not be possible. If our architecture is
used for a Web sever, accounting tests may not be possi-
ble. In this case, the satisfaction of requirements test may
be the best suited. Specifications like response time for
requests or file format can be used for constructing accep-
tance tests.
In many of the above examples, the acceptance test may

fail due to software failure, deliberate alteration of input
or internal data, or compromise of the system. Hence, the
dividing line between system reliability and security often
becomes blurred. An advantage of this is that techniques
for improving system reliability can be used for improving
security, and vice versa. Hence acceptance tests can be
carefully devised to detect both module failures and system
intrusions.
As mentioned earlier, Acceptance Monitors are also de-

signed to detect intrusions in the COTS servers. This can
be achieved by using known intrusion detection methodolo-
gies like user profiling and application profiling. Historical

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 42

system behavior is used as a reference and any deviations or
anomalies can be detected using suitable algorithms [6]. It
is also possible to design a system which adapts to changes
in normal behavior. The challenge in this kind of user or
application profiling is to determine the critical parameters
to monitor. Some examples of monitored parameters may
be CPU activity, number of active users, response time of
the application, disk space and memory usage.

If either the acceptance test fails or the user/application
profiling triggers an alert, both the Ballot Monitor and the
Adaptive Reconfiguration Module can in turn be alerted so
that the entire system adapts to the situation.

V. Ballot Monitors

The Ballot Monitors are responsible for deciding on
a final response through either a simple majority vot-
ing/adjudication or Byzantine agreement process for a
given request. Transformations (e.g. calculating the se-
cure hash value of a result) are needed before the vot-
ing/adjudication process can begin. Three main transfor-
mations can be considered.

• Level 1: Fletcher checksum
The checksum can be implemented by using the Fletcher
checksum algorithm, which is used in the OSI network
and transport layers [7]. The main reasons for using the
Fletcher checksum are: (1) it allows us to have a single
numerical value to compare and (2) it is easy to calculate,
yet it can detect patterns of data corruption different from
the standard Internet ones-complement checksum.
• Level 2: MD5 checksum
This algorithm [8] takes as input a message of arbitrary
length and produces as output a 128bit “fingerprint” or
“message digest” of the input. It is conjectured that it is
computationally infeasible to produce two messages having
the same message digest, or to produce any message hav-
ing a given pre-specified target message digest. In essence,
MD5 is a way to verify data integrity, and is much more
reliable than the Fletcher checksum described above.
• Level 3: Keyed MD5 checksum
A further refined MD5 algorithm called Keyed MD5 check-
sum is intended for digital signature applications, where a
large file must be “compressed” in a secure manner before
being encrypted with a private (secret) key under a public
key crypto-system such as RSA. In our context, the server’s
response, be it ASCII or binary, will be encrypted with is-
suer’s private key. This level of security is generally not
necessary unless we assume that Acceptance Monitor can
be compromised and Ballot Monitor can only trust their
input with authentication.

The voting/adjudication algorithms need to adapt to
both multiple-level robustness and dynamic reconfigura-
tions. For multiple-level robustness, we assume that one or
more voting machines can suffer from faults ranging from
crash failure (the simplest) to Byzantine failure (the most

sophisticated). We are particularly concerned with how
the responses are fed into each voting machine. If each
voting machine is mapped to a single server process, i.e.,
it only receives responses from that server, we need to run
an agreement algorithm to get a vote on the final result.
However, if each voting machine can “see” all the responses
from every server, no agreement algorithm is really needed,
i.e., each voting machine can arrive at a final vote indepen-
dently.

Ballot Monitors support additional flexibilities for pro-
viding dependable responses to the Proxy Servers. One
option is to designate a trusted voting machine as the an-
nouncer who is entrusted with presenting all the voting
results to the Proxy Server. The second option is to have a
dynamic announcer election process so that different Bal-
lot Monitors may serve as announcers for different requests.
The third option is for all the voting machines to present
their own version of the result and leave it to the Proxy
Server to decide the final answer. Intrusion tolerance and
performance tradeoffs are important considerations for se-
lecting among the three options.

VI. Audit control

Audit is defined as the independent examination of
records and activities to ensure compliance with estab-
lished controls, policy, and operational procedures, and to
recommend any indicated changes in controls, policy, or
procedures [9]. Audit records or audit trails are the chrono-
logical logs of the system/component activities. They con-
tain information regarding activities such as logins, com-
mand executions, file accesses, etc. By maintaining a
record of these activities it is possible to detect abnormal
behavior when it occurs in the system/component [10].

In the proposed architecture, each of the components,
i.e., the Proxy Servers, the Acceptance Monitors, the Bal-
lot Monitors and the Adaptive Reconfiguration module,
maintains its own audit record. The function of the audit
control module is to verify the audit records and to iden-
tify abnormal behavior in the components by conducting
periodic diagnostic tests.

We consider tracking different activities in each of the
components depending on their functions. Keeping track
of the application usage in such a case would help to detect
unauthorized usage. Audit logs on a given module will pro-
vide intrusion information on failed attacks on that mod-
ule, as well as information for intrusion activities coming
from other modules that have interacted with this mod-
ule. When using audit data to detect intrusions, a factor
to be considered is the level at which the data should be
collected. Audit records generated at a higher level may
allow low level attacks go undetected, while low level au-
dits may generate far too much information than can be
meaningfully processed.

The Audit Control module also maintains results of di-

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 43

agnostic tests for all the components. It maintains test
suites for singular components or functions as well as the
required responses to the tests. The Audit Control gener-
ates requests, legal or illegal, to the components and de-
tects abnormal behavior by verifying the responses to the
requests. The processed responses are forwarded to the
Adaptive Reconfiguration module for further action. For
instance, Audit Control will allow security administrators
to initiate requests to Proxy Servers, where the correct re-
sponses are known a priori. By comparing the responses
returned with those expected, faulty or compromised com-
ponents can be identified.

Intrusion detection mechanisms can be used in the Proxy
Servers to detect intrusions directly from outside and in the
Acceptance Monitors to detect compromises in the COTS
servers. These additional enhancement can help Audit
Control to analyze anomaly behavior and generate Intru-
sion alarms to the ARM and trigger system dynamic re-
configuration.

The IDS deployed at the Proxy Servers may keep track
of the source and frequency of requests as well as the usage
of service types. Normal patterns can be established and
deviations will be detected to signal anomalies. IDSs that
have firewall like capabilities are particularly useful at the
Proxy Servers for functioning as a security filter.

The IDS at the Acceptance Monitors may model sys-
tem activity and resource usage data like CPU utiliza-
tion, amount of real/virtual memory, disk space and pag-
ing rates, and applications’ response time, etc., to serve
as potential indicators of malicious attacks on the COTS
servers. One novel technique we are investigating is soft-
ware aging based test [11]. The software aging is referred to
the phenomenon in which the state of the software system
degrades with time. The primary causes of this degrada-
tion are the exhaustion of operating system resources, data
corruption and numerical error accumulation. This may
eventually lead to performance degradation of the software
or crash/hang failure or both. Software aging has been
reported in widely used software like xrn, and also in spe-
cialized software. This shows quite a bit similarities with
DOS (Denial of Services) attack, and the countermeasures
developed from this area maybe applicable to the ITS sys-
tem.

VII. Dynamic reconfigurations

A highly reconfigurable architecture enables multiple
fault/intrusion tolerance strategies to exist and allows dif-
ferent levels of security requirements to be supported con-
currently in the system. In general, different strategies
can be defined by choosing the types of intrusion tolerance
techniques, the degrees of redundancy, and the allocation
of components, among other factors.

The design of our intrusion tolerant architecture takes
into account the fact that the overall system will need to

support various configuration options in support of varying
levels of security postures. While each component is indi-
vidually configurable, it is the responsibility of the Adap-
tive Reconfiguration Module to ensure that that the overall
system configuration supports the desired security level. To
this end, appropriate strategies for reconfiguration as well
as methods to evaluate the security afforded by each pos-
sible configuration will need to be devised. We will use
both formal and simulation techniques to evaluate overall
system security.

COTS services offered via the Proxy Servers can be dis-
tributed among the servers based on the service itself, the
current load on each Proxy Server or the desired redun-
dancy level. For instance, a particular service may be of-
fered only on a subset of Proxy Servers or on all of the
servers. Thresholds for when to migrate services based on
current load can be varied depending on service profiles or
performance requirements. When under attack, the proxies
can be configured to limit access to critical services to spe-
cific subnets (reflecting clients of greater importance). Ac-
cess to noncritical services may be temporarily suspended
until the system can recover from the attack or adopt a
higher security posture.

Simple checksum schemes such as the Fletcher checksum
have the advantage of fast computation and the ability to
detect certain patterns of data corruption. However, under
hostile circumstances when we can no longer trust a simple
checksum value, a more robust checksum solution such as
keyed-MD5 will need to be employed by the Ballot Monitor
to meet the increased security requirements.

Single ballot voting is suitable in a relatively benign en-
vironment where optimum performance is the first priority.
However, when notification is received from the ARM that
one or more of the voting machines have been potentially
compromised, a shift to distributed voting is imperative to
increase the tolerance capability. Smooth dynamic adap-
tation and response under different configurations is well
within the consideration of the proposed architecture and
design of the Ballot Monitors.

One important consideration regarding strategies for in-
trusion tolerance is the actual level of security threat. The
threat level directly impacts the level of active redundancy
(e.g., replication level of servers) required to ensure de-
pendable services. The Active Redundancy configuration,
in which all redundant servers assigned to a given request
are invoked in parallel all the time, is necessary if the threat
level demands it. At the other end of the spectrum, zero
redundancy is needed if there is no threat at all. An inter-
mediate strategy will designate redundant servers as pri-
mary, secondary (called backup when the replication level
is 2), tertiary, and so on. The primary server is invoked first
to process the request and additional servers are invoked
for a given request only when necessary. In the absence
of faults (accidental or intentional) backup servers do not

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 44

need to be invoked at all. These servers can potentially
be used to serve other requests. The downside, however, is
when the server we choose to invoke first turns out to be
compromised. This implies that one or more of the servers
will have to be invoked successively before an acceptable
result is obtained. The price paid in this case is the long
latency in satisfying this particular request. This demon-
strates another aspect of the cost/performance tradeoff in
intrusion tolerance design – the overall service throughput
versus the response time for individual requests.

VIII. Experimentation

We are performing several basic experiments over our
test-beds at MCNC and Duke in order to fully evaluate
the solution. The initial Web servers will include Netscape
server and Apache server, running on PCs and SUN work-
stations. The attack tools will be drawn from a variety
of sources, including existing tools from active and past
MCNC projects, other researchers, and hacker sites on the
Internet. After some experiments on each individual test-
bed, the two test-beds will be connected through NCNI
GigaPOP network and additional experiments will be con-
ducted between the two campuses. Three main types of
experiments are planned.

• Basic functionality testing. This set of experiments will
utilize controlled attacks that exercise intrusion triggers,
intrusion tolerant modules, and the basic reconfiguration
strategies. Our intent is to test and demonstrate the ba-
sic operation of the proof-of-concept capabilities. These
experiments will be conducted independently on both test-
beds at MCNC and Duke, with coordination between the
two efforts.
• Robustness testing. This set of experiments will also use
controlled attacks. The emphasis for these experiment is
on exercising the system functions for longer durations and
with more realistic application scenarios. Our aim is not
at exhaustive testing of error conditions but rather to get
a reasonable level of comfort with the robustness of the
implementation. These experiments will also be performed
independently on the two test-beds at MCNC and Duke.
• Quantitative measures of performance. This set of ex-
periments is designed to explore and measure the perfor-
mance limits of the prototype. We will experiment with
several configurations of the system to sample the toler-
ance performance spectrum. We will attempt to correlate
the analytical/simulation results with results from experi-
mental measurements. These tests will be performed using
both test-beds, connected via the NCNI GigaPOP. Possible
measures to be studied include:
– Basic latencies for the system to react to intrusion trig-
gers.
– Replication level and throughput tradeoffs for serving
web page requests.
– Scalability properties of the coordination and control

design of the system.
– Scalability and tradeoff properties of each of the key
intrusion tolerant modules (Acceptance Monitor, Ballot
Monitor, Proxy Server, Audit Control, and Adaptive Re-
configuration).
Some of these measures will be highly dependent on the

testing conditions (e.g., system load). We will document
as accurately as possible the testing environment to fa-
cilitate accurate interpretation of the results. There are
several areas of IA&S programs with which we expect to
find opportunities for integration such Intrusion Detection
Systems and Fault Tolerant Networks. We expect to define
or implement “hooks” for integration with other intrusion
detection systems.

IX. Conclusions

This paper presented a scalable intrusion tolerant archi-
tecture for distributed services. This architecture consists
the following novel aspects: (1) We focus on a generic class
of services (COTS components) as target of protection. (2)
We exercise basic fault tolerance techniques such as redun-
dancy and diversity in security domain. (3) We explore
dynamic configuration strategy for different level of toler-
ance needs and justify cost/performance tradeoff. (4) The
tolerance capability applies to both external and internal
attacks.

Acknowledgments

The authors would like to acknowledge the suggestions of
many people in SITAR team: Rong Wang, Karen Litwin,
and Travis Walsh.

References

[1] Redhat Piranha, “Load-balanced generic service clustering en-
viroment,” http://sources.redhat.com/piranha/, 2000.

[2] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces: Principles,
Patterns, and Practice, Addison-Wesley, Menlo Park, CA, 1999.

[3] Yalta, “Yalta:A Collaborative Space for Secure Dynamic Coali-
tions,” http://www.anr.mcnc.org/~yalta, 2000.

[4] Y. F. Jou, F. Gong, C. Sargor, X. Wu, S. F. Wu, H. C. Chang,
and F. Wang, “Design and implementation of a scalable intru-
sion detection system for the protection of network infrastruc-
ture,” in DARPA Information Survivability Conference and Ex-
position, Hilton Head Island, SC, January 1999, pp. 422–434.

[5] P.A.Lee and T.Anderson, Fault Tolerance: Principles and Prac-
tice, Springer Verlag, 1990.

[6] R.A. Maxion, “Anomaly Detection for Diagnosis,” in Proc. of
20th IEEE Intl. Symposium on Fault Tolerant Computing, 1990.

[7] A. Mckenzie, “ISO Transport Protocol Specificatioin. ISO DP
8073,” RFC 905, Apr. 1984.

[8] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321,
Apr. 1992.

[9] SANS, “Security Glossary,” http://www.sans.org/newlook/
resources/glossary.htm, 1999.

[10] Dorothy E. Denning, “An intrusion-detection model,” IEEE
Transactions on Software Engineering, vol. 13, no. 2, pp. 222–
232, 1987.

[11] K.Vaidyanathan and K.S.Trivedi, “A Measurement-Based
Model for Estimation of Resource Exhaustion in Operational
Software Systems,” in Proc. of the 10th International Sym-
posium on Software Reliability Engineering (ISSRE’99), Boca
Raton, Florida, Nov. 1999, pp. 84–93.

ISBN 0-7803-9814-9/$10.00 c©2001 IEEE 45

